

WHOLE GRAIN FOOD BIOACTIVITY
Whole meal vs. white flour: $2.5-5 \times$ higher levels

Source
Fardet A. New hypotheses for the health-protective mechanis
ms of whole -grain cereals: what is beyond fibre? Nutr Res Re. ms of whole-grain cereals: What is beyond fibre? Nutr Res Rev
$201023(1): 65-134$. htp:/jiournals.cambridge.org/nr/fardet

Health-protective mechanisms of whole grain
cereals
new hypotheses

Health-protective mechanisms The physiological mechanisms of whole grain cereals: what is beyond fibre?

Introduction
Wheat, rice and corn are the most widely eaten
whole grains, followed by oats, rye and barley. A whole grains, followed by oats, re and barley. A
wheat kernel consists of 80.85% endosperm,
$10-14 \%$ bran and $2.5-3 \%$ germ (see Fiqure 1). 10.14 bran and $2.5-3 \%$ germ (see Figsure 1 ,
10 .
Whole grains contain more than 26 bioactive subWhole grains contain more than 26 bioactive sub-
stances such as fibre, vitamins, minerals, anti-
oxidants and onther phytochemicals surc as betaoxidants and other rhytochemineals such as beta-
ine, choline, sulphur a mino-acids or melatonia, ine, choline, sulphur amino-acids or melatonin,
which account for at least 15% of the whole grai by weight. . 0 st bioactive substances are in the
bran (about 52% by weight), and the egrm (at least bran (about 52% by weight), and the germe (at least
24% by weight) fractions. In refined cereals, the 24% by weight) fractions. In refined cereals, the
evels of bioactive compounds are substantially relevels of bioactive compounds are substantaily
duced due to tome complete or partial removal
the germ and bran fractions.
igure 1. The three wheat fraction (bran, germ and endosperm) with their main bioactive compounds: whole grain wheat

m
o
w
s
s
far
m
a
a
b
and
c
c
t
t
c
c
c
c
n
protective. In addition, whole grain products mav
lead to increased butyrate production (protective lead to increased butrrate production (protectiv
against tumour grouth) within the colon due to res.
stant starch the starch fraction that is not digested ant starch (the starch fraction that is not digested in he smali Intestine and fibre fermentation. Some nins and inhibitors of enzymes (e.g. proteases and
a-amylases) may also positively affect starch hydroly sit rate and subsequent blood glucose evels. Finally
it is now well demonstrated that heo consumption of
low-Gi (Glycaemic Index) whole-grain product eithe Iow-GI (Glycaemic Index) whole-grain products either glycaemia (or blood glucose control) a t the following contribute to the long-term metabolic benefits of low-Gl diets.
Besides these quite well-known mechanisms,
whole grain also contains a multitude of other bioac thole grain also contains a multitude of other bioac stances may however seem too low for reaching a nificant effect. But according to Fardet, it becomes increasingly obvious that the combination of a
these bioactive substances might have positive sy neese bioactive substances might have positive sy
nergistic health effects; not only within the intestine
ortowards cardiovascular diseases g. or towards cardiovascular diseases, Ilycose metabo
lism and weight regulation, buta tlso in new areas such as bone health and mental health (seef Figure 2)
Let's now have a detailed look at the main physiog Let's now have a detailed look at the main physiolog
cal effects of whole grain bioactive compounds:

Whole grain cereals as a rich source of fibre Whole grains are primarily a rich source of fibre. The
fibre content of whole wheat varies betefveen 9 and ibre content of whole wheat varies between 9 and
7 grams per 100 gram. That is more than vegeta-
. bles, which usually have up to 6 gre than pergita 100
grams edible portion. Thus, consuming whole grain cereal productsts is und oubtedly a goood way of increa sing the fibre intake from the $10-15 \mathrm{~g} /$ day eaten by
most Western populatio
of about $30-35 \mathrm{~g} /$ day.
Wheat fibre is mainly insoluble fibre and resistant
tarch. Fibres from whole grain foods are beneficial for gut thealth. Insoluble firre, which is poorly fer mented in the colon, favours an increased transit tin
and greater faecal bulking, two parameters that pro bably prevent colon cancer by diluting carcinogegens and reducing their time in contact with epithelia
cells. Cereal fibres also increase satiety and help con cells. Cereal fibres also increase satity and help con-
trol body weight. Fibre fermentation is also associa
ted with a high production of short hain fatty acids
 (e.g. butyrate) that are associated with a lower risk of
cancer, favouring the develoment of haedthy colo-
nic microbotan (i.e. a prebiotic effect). However, the way fibres may be beneficicial for hum.). Howevever, health is chanisms e.g. hormonal effects or decreased gastric
emprtying rate (due to viscous fibre.

Whole grain cereals as rich sources of anticarcinogenic compounds
This anti-carcinogenic effect is mainly attributed to
the anti-ixidant and ant-i-nflammatory properties of
Severa severara bioactive compounds as increased oxidatie
stress and inflammation are involved in cancer aetio
logy. Phenolic acids flavonids ats
 E, $\mathrm{H}-\mathrm{F}$ fatty acidss, lignan phtioestrogens, steroid sa
ponins (found mainly in oats), phytic acid and seleni
um are all potential supressors of tem ponins found mainly in oast, phyyic acia and seleni-
um are all lotential supressors of tumour rgooth,
but human, animal and/or in vitro cell studies indibut human, animal and//or in vitroc cell studies indi-
cate that their mechanisms of action may differ. To summarize, it is possible to distinguish between the
anticarcinogenic effects of insoluble fibre e (including
and anticarcinogenic effects of insoluble fibre (including
lignina)and hpytochemicals. Insoluble fifre may act
directly by absorbing or ligin) and phytochemicals. Insolubte fibre may act
diriectly by absoronig. or diluting carcinogens
(through incrasef faecal bulk by water absortion), (through increased faecal bulk by water absorption),
or indirectly by decreasing colon pH (through Short Chinn Faty Acids production) and increasing
Cutryate production. The role of phytochemicals is complex and multi factorial, and notably involve

Figure 2. Current and new proposed physiological mechanisms involved in protection by whole grain cereals. The dotted
 mechanisms, hhile the cos
$m s$
and health outcomes.

Whole grain cereals as a rich source of magnesium and anti-oxidants
Not only do whole grains contain fibre, but also rele-
vant amounts of magnesium and antioxidants. The high magnesium content may partly explain the be
neficial effect of whole grain foods on insulin sensitineficial effect of whole grain foods on insulin sensiti-
vity and risk of type 2 diabetes. Magnesium increases
insulin secretion and it is is known that diabetes is
 often associated with a lack of magnesium. In a
whole grain there arealso ifferent substance that
contribute directy whole grain there are also different substances that
contribute directly or indirectly top orotect the body
from increased oxidative stress. At least 30 bioactive Crom increased oxidative stress. At least 30 bioactiv
compounds might be involved: Think of poly
phenols carotenoids vitamin and phenols, carotenoidss vitamin Eand minerals like se-
lenium, ron, copper and zinc, which act as a cofactor
 glutathione, an endogenous antioxidant. Even lignin,
generally considered as biologically inactive, has generally considered as biologically inactive, has
been shown to exert a potential antioxidant effect in been show to exert t potential antioxidant effect in
animals. Antioxidants found in whole grains may
also protect the intestinal epithelium against damage by free radicals, such as those produced within the
colon through bacteria metabolism. The antioxidants in whole^grain cereals may therefore act via
different, complex, and synergetic mechanisms in vivo. However , the ant bexioxant anticion of f holole grain
cereals has not yet been convincingly validated in cereals has not yet been convincingly v
humans and requires further exploration.
Other bioactive compounds and potential health effects

Recent findings, the exhaustive listing of bioactive
compounds found in whole grain wheat, their content in whole grain, bran and germ fractions and their estimated biaavailability, have led to new hypoling and gene regulation, and of sulphur comin antioxidant protection. Whole grain wheat is also a rich source of methyl donors/lipotropes
(methionine, betaine, choline, inositol and folates)

